Application Notes:
 

tensor


have slightly different meanings in mathematics and physics. In the mathematical fields of multilinear algebra and differential geometry, a tensor is a multilinear function. In physics and engineering, the same term usually means what a mathematician would call a tensor field: an association of a different (mathematical) tensor with each point of a geometric space, varying continuously with position. For example, the Euclidean inner product (dot product) — a real-valued function of two vectors that is linear in each — is a mathematical tensor. Similarly, on a smooth curved surface such as a torus, the metric tensor (field) essentially defines a different inner product of tangent vectors at each point of the surface. Just as a linear transformation can be represented as a matrix of numbers with respect to given vector bases, so a tensor can be written as an organized collection of numbers. In physics, the numbers may be obtained as physical quantities that depend on a basis, and the collection is determined to be a tensor if the quantities transform appropriately under change of basis.

 

 

Back to T List                Index     

REAL Services          700 Portage Trail            Cuyahoga Falls, OH            44221.3057

voice: 330.630.3700        fax: 330.630.3733

© 1995-2005 REAL Services®  U.S.A. - Analytical Almanac All Rights Reserved